文学作品阅读

中国古代数学_第十一章 无穷小分割思想 第一节 割圆术

郭书春
科普学习
总共55章(已完结

中国古代数学 精彩片段:

第十一章 无穷小分割思想

人们一谈到早期的无穷小分割和极限思想,往往想到古希腊的穷竭法。实际上,穷竭法并没有使用极限。在文艺复兴之前,在数学中真正使用过极限思想的是中国的刘徽。极限思想在中国萌芽很早。先秦名家有“一尺之捶,日取其半,万世不竭”的命题,墨家也有无限分割一尺之杆的方法,不过认为不会万世不竭,而最终归结为不可再分的“端”。汉司马迁《史记·酷吏列传》有“破觚为園〔同圆〕”的说法,直观地描述了多边形通过无限分割与圆的转化关系。而刘徽在世界上最先把无穷小分割和极限思想用于数学证明。

第一节 割圆术

对《九章算术》的圆面积公式S=½Lr,在刘徽之前是以周三径一为基础,将圆内接正6边形周长作为圆周长,正12边形面积作为圆面积,用出入相补原理证明的。刘徽指出,圆的周长与直径“非周三径一之率”(《九章算术·方田章注》),这个证明是不严格的。刘徽创造了新的方法:他从圆内接正6边形开始割圆,得到一个正6·2边形序列。设Sn是6·2边形面积,pn是每边长,如图35。

显然,n愈大,S-Sn愈小,所谓“割之弥细,所失弥少。”(同上)而“割之又割,以至于不可割,则与圆合体而无所失矣。”(同上)即证明了L=lim6·2P。6·2边形每边与圆周间有余径rn。以边长乘余径,加到6·2边形面积上,则大于圆面积,即S<S<S+2(S-S)。

而当n无限大时,rn→0,那么lim〔S+2(S-S)〕=S

所谓“若夫觚之细者,与圆合体,则表无余径。表无余径,则幂不外出矣”。这就证明了圆面积的上界序列与下界序列的极限都是圆面积:S=limS。然后,刘徽说:“以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂。”(《九章算术·方田章注》)即将与圆合体的边数无限的正多边形分割成无限多个以圆心为顶点,以该多边形的每边为底的小等腰三角形,由于以每边长乘半径是小三角形面积的二倍,而与圆合体的正多边形的边长之和是L,这就证明了S=½Lr。显然,这里包含了几个相当严谨的极限过程,并且是通过对圆面积的无穷小分割,再求其和进行证明的。这种方法与微积分产生前的面积元素法极为接近。数学史家史密斯(D.E.Smith,公元1860—?年)把微积分的发展概括为穷竭法、无穷小方法、流数法和极限四个阶段。刘徽已完成了前两个阶段,并已有明显的极限过程。

作品简介:

数学是中国古代最为发达的基础科学学科之一,约公元前3世纪至公元14世纪初领先于世界先进水平。中国传统数学是当时世界数学发展的主流。中国传统数学的思想和方法既可用于现今的中小学数学教学,也对当前的数学研究有某些启迪作用。

作者:郭书春

标签:郭书春中国古代数学中国文化史知识丛书科技专题

中国古代数学》最热门章节:
1附录 辅文图片2第十二章 中国古代数学的特征与意义 第二节 中国古算的地位和意义3第十二章 中国古代数学的特征与意义 第一节 中国古代数学的特征4第十一章 无穷小分割思想 第六节 尖锥术5第十一章 无穷小分割思想 第五节 祖暅之原理与球体积6第十一章 无穷小分割思想 第四节 刘徽原理7第十一章 无穷小分割思想 第三节 弧田密率与会圆术8第十一章 无穷小分割思想 第二节 圆周率9第十一章 无穷小分割思想 第一节 割圆术10第十章 不定问题 第四节 大衍总数术与大衍求一术
更多『科普学习』类作品: